Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 3 No. 1 (2026)

Respiratory structures in cornute stylophorans (Echinodermata)

DOI
https://doi.org/10.26034/la.opal.2026.8440
Submitted
21 July 2025
Published
17-02-2026

Abstract

The diversity of 'accessory orifices' (sutural pores, cothurnopores, lamellipores) in cornute stylophorans is reviewed, based on detailed examination of both previously described and new material, to discuss their similarities and differences with other deuterostome respiratory structures. The orifices present in the most basal taxa (e.g. Ceratocystis and Nevadaecystis) are morphologically identical to the sutural pores of many other Cambrian echinoderms, therefore ruling out previous interpretations of these structures as multiple mouths, gonopores, and gill slits. Cothurnopores correspond to highly specialized covered sutural pores, each delimited by a pair of U-shaped plates. The large 'accessory orifices' of Phyllocystis crassimarginata, along with the morphologically identical but smaller ones observed in cothurnopores, are here designated as pustulipores; in life, they probably housed soft, papulae-like exothecal respiratory structures. Proto-lamellate organs correspond to dense aggregations of cothurnopores that lack pustulipores. Lamellate organs are reinterpreted as highly folded structures, functionally analogous to pectinirhombs, composed of numerous, sutured lamellae, each consisting of a pair of tightly compressed U-shaped plates. No evidence supports the presence of a flap in cothurnopores, nor slit-like openings (lamellipores) in lamellate organs. The genus Thoralicystis is here reinstated as valid, and Proscotiaecystis is considered a junior synonym.

References

  1. Bather, F.A. 1913. Caradocian Cystidea from Girvan. Transactions of the Royal Society of Edinburgh 49, 359–529. https://doi.org/10.1017/S0080456800003999
  2. Bather, F.A. 1926. Cothurnocystis: a study in adaptation. Paläontologische Zeitschrift 7, 1– 12. https://doi.org/10.1007/BF03161542
  3. Bather, F.A. 1930. A class of Echinoderma without trace of radiate symmetry. Archivio Zoologico Italiano 14, 431–439.
  4. Bönik, K., Gutman, W.F. and Haude, R. 1978. Stachelhäuter mit Kiemen-Apparat: der Belag für die Ableitung der Echinodermen von Chordaten. Natur und Museum 108, 211–214.
  5. Bottjer, D.J., Davidson, E.H., Peterson, K.J. and Cameron, R.A. 2006. Paleogenomics of echinoderms. Science 314, 956–960. https://doi.org/10.1126/science.1132310
  6. Brusca, R.C., Moore, W. and Shuster, S.M. 2016. Invertebrates. Third edition. Sinauer, 1104 p.
  7. Chauvel, J. 1941. Recherches sur les cystoïdes et les carpoïdes armoricains. Mémoires de la Société Géologique et Minéralogique de Bretagne 5, 1–286.
  8. Chauvel, J. 1966. Échinodermes de l’Ordovicien du Maroc. Éditions du CNRS, 120 p.
  9. Chauvel, J. 1971. Les échinodermes carpoïdes du Paléozoïque inférieur marocain. Notes du Service géologique du Maroc 31, 49–60.
  10. Cripps, A.P. 1988. A new species of stem-group chordate from the Upper Ordovician of Northern Ireland. Palaeontology 31, 1053–1077.
  11. Cripps, A.P. 1989a. A new stem-group chordate (Cornuta) from the Llandeilo of Czechoslovakia and the cornute-mitrate transition. Zoological Journal of the Linnean Society 96, 49–85. https://doi.org/10.1111/j.1096-3642.1989.tb01821.x
  12. Cripps, A.P. 1989b. A new genus of stem chordate (Cornuta) from the Lower and Middle Ordovician of Czechoslovakia and the origin of bilateral symmetry in the chordates. Geobios 22, 215–245. https://doi.org/10.1016/S0016-6995(89)80129-9
  13. Cripps, A.P. 1991. A cladistic analysis of the cornutes (stem chordates). Zoological Journal of the Linnean Society 102, 333–366.
  14. Cripps, A.P. and Daley, P.E.J. 1994. Two cornutes from the Middle Ordovician (Llandeilo) of Normandy, France, and a reinterpretation of Milonicystis kerfornei. Palaeontographica Abteilung A 232, 99–132. https://doi.org/10.1111/j.1096-3642.1991.tb00005.x
  15. Daley, P.E.J. 1992. Two new cornutes from the Lower Ordovician of Shropshire and southern France. Palaeontology 35, 127–148.
  16. David, B., Lefebvre, B., Mooi, R. and Parsley, R. 2000. Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26, 529–555. https://doi.org/10.1666/0094-8373(2000)026<0529:AHEAAF>2.0.CO;2
  17. Delpey, G. 1941. Mode particulier de nutrition de certains échinodermes: l’ouverture interne de la bouche. Bulletin de la Société Géologique de France 11, 87–95. https://doi.org/10.2113/gssgfbull.S5-XI.1-3.87
  18. Derstler, K. 1979. Biogeography of the stylophoran carpoids (Echinodermata). In: Gray, J. and Boucot, A.J. (Eds.), Proceedings of the 37th Annual Biology Colloquium and Selected Papers. Oregon State University Press, 91–104.
  19. Friedrich, W.P. 1993. Systematik und Funktionsmorphologie mittelkambrischer Cincta (Carpoidea, Echinodermata). Beringeria 7, 1–190.
  20. Gee, H. 2001. On being vetulicolian. Nature 414, 408–409. https://doi.org/10.1038/35106680
  21. Gil Cid, M.D., Domínguez, P., Silván Pobes, E. and Escribano Ródenas, M. 1996. Bohemiaecystis jefferiesi n. sp.; primer Cornuta para el Ordovícico español. Estudios Geologicos 52, 313–326. https://doi.org/10.3989/egeol.96525-6274
  22. Gislén, T. 1930. Affinities between the Echinodermata, Enteropneusta and Chordonia. Zoologiska Bidrag från Uppsala 12, 199–304.
  23. Guensburg, T.E. and Sprinkle, J. 2003. The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology 364, 5–43.
  24. Guensburg, T.E., Mooi, R. and Mongiardino Koch, N. 2023. Crinoid calyx origin from stem radial echinoderms. Journal of Paleontology 97, 1092–1115. https://doi.org/10.1017/jpa.2023.14
  25. Hudson, G.H. 1911. Studies of some early Siluric Pelmatozoa. Bulletin of the New York State Museum, 149, 195–258.
  26. Hudson, G.H. 1915. Some fundamental types of hydrospires with notes on Porocrinus smithi Grant. Bulletin of the New York State Museum 177, 163–173.
  27. Jackson, L. 2024. Understanding the evolution of pharyngeal structures in fossil echinoderms. Palaeontology Newsletter 117, 83–86.
  28. Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologische Zeitschrift 3, 1–124. https://doi.org/10.1007/BF03190413
  29. Jefferies, R.P.S. 1968. The subphylum Calcichordata (Jefferies 1967) primitive fossil chordates with echinoderm affinities. Bulletin of the British Museum (Natural History) (Geology) 16, 243–339. https://doi.org/10.5962/p.313838
  30. Jefferies, R.P.S. 1969. Ceratocystis perneri Jaekel - A Middle Cambrian chordate with echinoderm affinities. Palaeontology 12, 494–535.
  31. Jefferies, R.P.S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), 376 p.
  32. Jefferies, R.P.S. and Prokop, R.J. 1972. A new calcichordate from the Ordovician of Bohemia and its anatomy, adaptations and relationships. Biological Journal of the Linnean Society 4, 69–115. https://doi.org/10.1111/j.1095-8312.1972.tb00691.x
  33. Jollie, M. 1982. What are the ’Calcichordata’? and the larger question of the origin of chordates. Zoological Journal of the Linnean Society 75, 167–188. https://doi.org/10.1111/j.1096-3642.1982.tb01946.x
  34. Lee, S.B., Lefebvre, B. and Choi, D.K. 2005. Latest Cambrian cornutes (Echinodermata: Stylophora) from the Taebaeksan Basin, Korea. Journal of Paleontology 79, 139–151. https://doi.org/10.1666/0022-3360(2005)079<0139:LCCESF>2.0.CO;2
  35. Lefebvre, B. 2003. Functional morphology of stylophoran echinoderms. Palaeontology 46, 511–555. https://doi.org/10.1111/1475-4983.00309
  36. Lefebvre, B. and Vizca¨ıno, D. 1999. New Ordovician cornutes (Echinodermata, Stylophora) from Montagne Noire and Brittany (France) and a revision of the Order Cornuta Jaekel 1901. Geobios 32, 421–458. https://doi.org/10.1016/S0016-6995(99)80019-9
  37. Lefebvre, B., Allaire, N., Guensburg, T.E., Hunter, A.W., Kouraïss, K., Martin, E.L.O., Nardin, E., Noailles, F., Pittet, B., Sumrall, C.D. and Zamora, S. 2016. Palaeoecological aspects of the diversification of echinoderms in the Lower Ordovician of central Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 460, 97–121. https://doi.org/10.1016/j.palaeo.2016.02.039
  38. Lefebvre, B., Nohejlová, M. and Kašička, L. 2017. Palaeobiogeographic implications of new scotiaecystid cornutes (Echinodermata, Stylophora) from the Ordovician of the Anti-Atlas (Morocco) and Bohemia (Czech Republic). Programme, Abstracts and AGM papers, 61st Annual Meeting of the Palaeontological Association, 17-20 December 2017, London, 106.
  39. Lefebvre, B., Guensburg, T.E., Martin, E.L.O., Mooi, R., Nardin, E., Nohejlová, M., Saleh, F., Kouraïss, K., El Hariri, K. and David, B. 2019. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios 52, 27–36. https://doi.org/10.1016/j.geobios.2018.11.001
  40. Lefebvre, B., Nohejlová, M., Martin, E.L.O., Kašička, L., Zicha, O. and Gutiérrez-Marco J.C. 2022. New Middle and Late Ordovician cornute stylophorans (Echinodermata) from Morocco and other peri-Gondwanan areas. In: Hunter, A.W., Álvaro, J.J., Lefebvre, B., Van Roy, P. and Zamora, S. (Eds.), The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. The Geological Society, London, Special Publications 485, 345–522. https://doi.org/10.1144/SP485-2021-99
  41. Lefebvre, B., Mooi, R., Guensburg, T.E., Dupichaud,, C. and Nohejlová M. 2024. Approaches to understanding echinoderm origins. Part 1: Conceptual and empirical models. Cahiers de Biologie Marine 65, 437–462.
  42. Martí Mus, M. 2002. The Ordovician cornute Flabellicystis rushtoni n. gen. n. sp. (Stylophora, Echinodermata) and its phylogenetic position within the group Cornuta. Paläontologische Zeitschrift 76, 99–116. https://doi.org/10.1007/BF02988189
  43. Martin, E.L.O., Lefebvre, B. and Vaucher, R. 2015. Taphonomy of a stylophoran-dominated assemblage in the Lower Ordovician of Zagora area (central Anti-Atlas, Morocco). In: Zamora, S. and Rábano, I. (Eds.), Progress in Echinoderm Palaeobiology. Cuadernos del Museo Geominero 19, 95–100.
  44. Mooi, R., Lefebvre, B., Guesburg, T.E., Nohejlová M. and Dupichaud, C. 2024. Approaches to understanding echinoderm origins. Part 2: Questioning conceptual models. Cahiers de Biologie Marine 65, 463–490.
  45. Nardin, E. and Bohatý, J. 2013. A new pleurocystitid blastozoan from the Middle Devonian of the Eifel (Germany) and its phylogenetic importance. Acta Palaeontologica Polonica 58, 533–544. https://doi.org/10.4202/app.2011.0116
  46. Nohejlová, M. and Fatka, O. 2016. Ontogeny and morphology of Cambrian eocrinoid Akadocrinus (Barrandian area, Czech Republic). Bulletin of Geosciences 91, 141–153. https://doi.org/10.3140/bull.geosci.1583
  47. Parsley, R.L. 1988. Feeding and respiratory strategies in Stylophora. In: Paul, C.R.C. and Smith A.B. (Eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, 347–361.
  48. Parsley, R.L. 1997. The echinoderm classes Stylophora and Homoiostelea: non-Calcichordata. In: Waters, J.A. and Maples, C.G. (Eds.), Geobiology of Echinoderms. Paleontogical Society Papers 3, 225–248. https://doi.org/10.1017/S1089332600000279
  49. Parsley, R.L. 2012. Ontogeny, functional morphology, and comparative morphology of lower (Stage 4) and basal middle (Stage 5) Cambrian gogiids, Guizhou Province, China. Journal of Paleontology 86, 569–583. https://doi.org/10.1666/10-153R2.1
  50. Parsley, R.L. and Zhao, Y.L. 2006. Long stalked eocrinoids from the basal Middle Cambrian Kaili Biota, Taijiang county, Guizhou Province, China. Journal of Paleontology 80, 1058– 1071. https://doi.org/10.1666/0022-3360(2006)80[1058:LSEITB]2.0.CO;2
  51. Paul, C.R.C. 1968. Morphology and function of dichoporite pore-structures in cystoids. Palaeontology 11, 697–730.
  52. Paul, C.R.C. 1972. Morphology and function of exothecal pore-structures in cystoids. Palaeontology 15, 1–28.
  53. Paul, C.R.C. and Smith, A.B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews 59, 443–481. https://doi.org/10.1111/j.1469-185X.1984.tb00411.x
  54. Paul, C.R.C. and Toom, U. 2021. The diploporite blastozoan Glyptosphaerites (Echinodermata: Blastozoa) and the origin of diplopores. Estonian Journal of Earth Sciences 70, 224–239. https://doi.org/10.3176/earth.2021.15
  55. Philip, G.M. 1979. Carpoids - Echinoderms or chordates? Biological Reviews 54, 439–471. https://doi.org/10.1111/j.1469-185X.1979.tb00845.x
  56. Rahman, I.A. and Zamora, S. 2024. Origin and early evolution of echinoderms. Annual Review of Earth and Planetary Sciences 52, 295–320. https://doi.org/10.1146/annurev-earth031621-113343
  57. Saleh, F., Lefebvre, B., Dupichaud, C., Martin, E.L.O., Nohejlová M. and Spaccesi, L. 2023. Skeletal elements controlled soft-tissue preservation in echinoderms from the Early Ordovician Fezouata Biota. Geobios 81, 51–66. https://doi.org/10.1016/j.geobios.2023.08.001
  58. Sheffield, S. and Sumrall, C.D. 2019. The phylogeny of the Diploporita: A polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology 93, 740–752. https://doi.org/10.1017/jpa.2019.2
  59. Sheffield, S.L., Limbeck, M.R., Bauer, J.E., Hill, S.A. and Nohejlov´a, M. 2022. A review of blastozoan echinoderm respiratory structures. Elements of Paleontology, Cambridge University Press, Cambridge, 85 p. https://doi.org/10.1017/9781108881821
  60. Shick, J.M. 1983. Respiratory gas exchange in echinoderms. In: Jangoux, M. and Lawrence, J.M. (Eds.), Echinoderm Studies 1. CRC Press, 67–110. https://doi.org/10.1201/9781003079071-4
  61. Smith, A.B. 2005. The pre-radial history of echinoderms. Geological Journal 40, 255–280. https://doi.org/10.1002/gj.1018
  62. Smith, A.B. 2008. Deuterostomes in a twist: the origins of a radical new body plan. Evolution and Development 10, 493–503. https://doi.org/10.1111/j.1525-142X.2008.00260.x
  63. Spencer, W.K. 1938. Some aspects of evolution in Echinodermata. In: De Beer, G.R. (Ed.), Evolution, Essays on Aspects of Evolutionary Biology presented to Professor E.S. Goodrich for his Seventieth Birthday. Clarendon Press, 287–303.
  64. Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Museum of Comparative Zoology Harvard University, 283 p. https://doi.org/10.5962/bhl.title.66379
  65. Sprinkle, 1982. Large-calyx cladid inadunates. In: Sprinkle (Ed.), Echinoderm faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Contributions, Monograph 1, 145–169.
  66. Sumrall, C.D. and Waters, J.A. 2012. Universal Elemental Homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived Blastozoa. Journal of Paleontology 86, 956–972. https://doi.org/10.1666/12-029R.1
  67. Sumrall, C.D., Sprinkle, J. and Guensburg, T.E. 1997. Systematics and paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology 71, 1091–1109. https://doi.org/10.1017/S0022336000036052
  68. Thoral, M. 1935. Contribution à l’Étude Paléontologique de l’Ordovicien inférieur de la Montagne Noire et Révision Sommaire de la Faune Cambrienne de la Montagne Noire. Imprimerie de la Charité, 362 p.
  69. Ubaghs, G. 1953. Notes sur Lichenoides priscus Barrande, éocrino¨ıde du Cambrien moyen de la Tchécoslovaquie. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 29, 1–24.
  70. Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology 37, 1133–1142.
  71. Ubaghs, G. 1967. Le genre Ceratocystis Jaekel (Echinodermata, Stylophora). University of Kansas Paleontological Contributions 22, 1–16.
  72. Ubaghs, G. 1968a. Eocrinoidea. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology, Echinodermata 1(2). Geological Society of America and University of Kansas Press, S455–S495.
  73. Ubaghs, G. 1968b. Stylophora. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology, Echinodermata 1(2). Geological Society of America and University of Kansas Press, S495–S565.
  74. Ubaghs, G. 1969. Les échinodermes ≪ carpoïdes ≫ de l’Ordovicien inférieur de la Montagne Noire (France). Éditions du CNRS, Cahiers de Paleontologie, 110 p.
  75. Ubaghs, G. 1971. Diversité et spécialisation des plus anciens échinodermes que l’on connaisse. Biological Reviews 46, 157–200. https://doi.org/10.1111/j.1469-185X.1971.tb01181.x
  76. Ubaghs, G. 1983. Echinodermata. Notes sur les échinodermes de l’Ordovicien inférieur de la Montagne Noire (France). In: Courtessole, R., Marek, L., Pillet, J., Ubaghs, G. and Vizcaïno, D. (Eds.), Calymena, Echinodermata et Hyolitha de l’Ordovicien de la Montagne Noire (France méridionale). Société d’Etudes Scientifiques de l’Aude, 33–35.
  77. Ubaghs, G. 1987. Échinodermes nouveaux du Cambrien moyen de la Montagne Noire (France). Annales de Paléontologie 73, 1–27.
  78. Ubaghs, G. 1991. Deux Stylophora (Homalozoa, Echinodermata) nouveaux pour l’Ordovicien inférieur de la Montagne Noire (France méridionale). Paläontologische Zeitschrift 65, 157–171. https://doi.org/10.1007/BF02985781
  79. Ubaghs, G. 1994. Échinodermes nouveaux (Stylophora, Eocrinoidea) de l’Ordovicien inférieur de la Montagne Noire (France). Annales de Paléontologie 80, 107–141.
  80. Ubaghs, G. and Vizcaïno, D. 1990. A new eocrinoid from the Lower Cambrian of Spain. Palaeontology 33, 249–256.
  81. Woods, I.S. and Jefferies, R.P.S. 1992. A new stem-group chordate from the Lower Ordovician of South Wales, and the problem of locomotion in boot-shaped cornutes. Palaeontology 35, 1–25.
  82. Zamora, S., Gozalo, R. and Liñán, E. 2009. Middle Cambrian gogiid echinoderms from northeast Spain: Taxonomy, palaeoecology, and palaeogeographic implications. Acta Palaeontologica Polonica 54, 253–265. https://doi.org/10.4202/app.2008.0010
  83. Zamora, S. and Rahman, I.A. 2014. Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57, 1105–1119. https://doi.org/10.1111/pala.12138
  84. Zamora, S., Darroch, S. and Rahman, I.S. 2013. Taphonomy and ontogeny of early pelmatozoan echinoderms: a case study of a mass-mortality assemblage of Gogia from the Cambrian of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 377, 62–72. https://doi.org/10.1016/j.palaeo.2013.03.009
  85. Zamora, S., Lefebvre, B., Hosgör, I., Franzen, C., Nardin, E., Fatka, O. and Álvaro, J.J. 2015. The Cambrian edrioasteroid Stromatocystites (Echinodermata): systematics, palaeobiogeography, and palaeoecology. Geobios 48, 417–426. https://doi.org/10.1016/j.geobios.2015.07.004
  86. Zhao, Y.L., Parsley, R.L. and Peng, J. 2008. Basal Middle Cambrian short-stalked eocrinoids from the Kaili Biota: Guizhou Province, China. Journal of Paleontology 82, 415–422. https://doi.org/10.1666/06-041.1