Skip to main navigation menu Skip to main content Skip to site footer

Hypotheticals

Vol. 3 No. 1 (2026)

Reconstruction of CO2 levels in the Late Devonian - Mississippian on the basis of decoupling of C-isotope composition of conodont elements and host carbonates

DOI
https://doi.org/10.26034/la.opal.2026.7198
Submitted
14 April 2025
Published
30-01-2026

Abstract

The study explores a novel proxy for reconstructing atmospheric CO2 concentrations during the Late Devonian–Mississippian, a key interval marked by the transition from a greenhouse to an icehouse climate and the onset of the Late Palaeozoic Ice Age. Traditional proxies for Palaeozoic CO2 levels, such as palaeosols and vascular plant and phytoplankton remains, are limited by scarcity, poor dating, or susceptibility to diagenetic alteration. To address these challenges, this work evaluates the decoupled carbon isotope composition of conodont elements and host carbonates. Based on integrated isotope analyses and comparison with compiled CO2 estimates, the study reveals a significant negative correlation between the decoupling of carbon isotope composition of conodont elements and host carbonates and atmospheric CO2 content. The results indicate taxon-specific trends, with Ozarkodinida and Prioniodinida exhibiting similar regression gradients but distinct intercepts, suggesting ecological or physiological influences on isotopic fractionation. The findings support the potential of the decoupling of carbon isotope composition of conodont elements and host carbonates as a potential proxy for atmospheric CO2, with implications for reconstructing spatial and temporal variations in Palaeozoic carbon cycles and climate dynamics.

References

  1. Balter, V., Martin, J.E., Tacail, T., Suan, G., Renaud, S. and Girard, C. 2019. Calcium stable isotopes place Devonian conodonts as first level consumers. Geochemical Perspectives Letters 10, 36–39. https://doi.org/10.7185/geochemlet.1912.
  2. Beerling, D.J., McElwain, J.C. and Osborne, C.P. 1998. Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49:326, 1603–1607. https://doi.org/10.1093/jxb/49.326.1603.
  3. Berner, R.A. 1994. GEOCARB II; a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 294:1, 56–91. https://doi.org/10.2475/ajs.294.1.56.
  4. Berner, R.A. and Kothavala, Z. 2001. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301:2, 182–204. https://doi.org/10.2475/ajs.301.2.182.
  5. Boucot, A.J., Chen, X. and Scotese, C.R. 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM (Society for Sedimentary Geology), Concepts in Sedimentology and Paleontology, no. 11. 478 pp. ISBN 978-1-56576-282-4.
  6. Breecker, D.O., Sharp, Z.D. and McFadden, L.D. 2010. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proceedings of the National Academy of Sciences USA 107:2, 576–580. https://doi.org/10.1073/pnas.0902323106.
  7. Came, R.E., Eiler, J.M., Veizer, J., Azmy, K., Brand, U. and Weidman, C.R. 2007. Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature 449:7159, 198–201. https://doi.org/10.1038/nature06085.
  8. Cheng, W., Dan, L., Deng, X., Feng, J., Wang, Y., Peng, J., Tian, J., Qi, W., Liu, Z., Zheng, X., Zhou, D., Jiang, S., Zhao, H. and Wang, X. 2022. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Scientific Data 9, 83. https://doi.org/10.1038/s41597-022-01196-7.
  9. Crowley, J.K. and Berner, R.A. 2001. CO2 and climate change. Science 292, 870–872. https://doi.org/10.1126/science.1061664.
  10. Ekart, D.D., Cerling, T.E., Montañez, I.P. and Tabor, N.J. 1999. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. American Journal of Science 299, 805–827.
  11. Fielding, C.R., Frank, T.D. and Isbell, J.L. 2008. The late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns. In: Fielding, C.R., Frank, T.D. and Isbell, J.L. (Eds.). Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, 343–354. https://doi.org/10.1130/2008.2441(24).
  12. Foote, E.N. 1856. Circumstances affecting the heat of Sun’s rays. American Journal of Science and Arts XXII(LXVI), 382–383.
  13. Foster, G., Royer, D. and Lunt, D. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications 8, 14845. https://doi.org/10.1038/ncomms14845.
  14. Freeman, K.H. and Hayes, J.M. 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles 6, 185–198.
  15. Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. and Nardin, E. 2014. The role of paleogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews 128, 122–138. https://doi.org/10.1016/j.earscirev.2013.11.004.
  16. Grossman, E.L. and Joachimski, M.M. 2022. Ocean temperatures through the Phanerozoic reassessed. Scientific Reports 12, 8938. https://doi.org/10.1038/s41598-022-11493-1.
  17. Hammer, Ø., Harper, D.A.T. and Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1, 1–9.
  18. Haq, B.U. and Schutter, S.R. 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–68. https://doi.org/10.1126/science.1161648.
  19. Harris, A.G. and Sweet, W.C. 1989. Mechanical and chemical techniques for separating microfossils from rock. In: Feldmann, R.M., Chapman, R.E. and Hannibal, J.T. (eds). Paleotechniques. Paleontological Society Special Publication 4, 70–86.
  20. Hartke, E.R., Bradley, D., Cramer, B.D., Calner, M., Melchin, M.J., Barnett, B.A., Oborny, S.C. and Bancroft, A.M. 2021. Decoupling δ13C_carb and δ13C_org at the onset of the Ireviken Carbon Isotope Excursion: Δ13C and organic carbon burial (f_org) during a Silurian oceanic anoxic event. Global and Planetary Change 196, 103373. https://doi.org/10.1016/j.gloplacha.2020.103373.
  21. Hayes, J.M., Strauss, H. and Kaufman, A.J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology 161, 103–125.
  22. Kotik, I.S., Zhuravlev, A.V., Maydl, T.V., Bushnev, D.A. and Smoleva, I.V. 2021. Early–Middle Frasnian (Late Devonian) carbon isotope event in the Timan–Pechora Basin (Chernyshev Swell, Pymvashor River section, North Cis-Urals, Russia). Geologica Acta 19:3, 1–17. https://doi.org/10.1344/GeologicaActa2021.19.3.
  23. Lenton, T.M., Daines, S.J. and Mills, B.J.W. 2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews 178, 1–28. https://doi.org/10.1016/j.earscirev.2017.12.004.
  24. Marcilly, C.M., Torsvik, T.H., Domeier, M. and Royer, D.L. 2021. New paleogeographic and degassing parameters for long-term carbon cycle models. Gondwana Research 97, 176–203. https://doi.org/10.1016/j.gr.2021.05.016.
  25. McKenzie, N.R. and Jiang, H. 2019. Earth’s outgassing and climatic transitions: The slow burn towards environmental catastrophes? Elements 15:5, 325–330. https://doi.org/10.2138/gselements.15.5.325.
  26. Mills, B.J.W., Krause, A.J., Scotese, C.R., Hill, D.J., Shields, G.A. and Lenton, T.M. 2019. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Research 67, 172–186. https://doi.org/10.1016/j.gr.2018.12.001
  27. Montañez, I.P. and Poulsen, C.J. 2013. The Late Paleozoic Ice Age: an evolving paradigm. Annual Review of Earth and Planetary Sciences 41, 24.1–24.28. https://doi.org/10.1146/annurev.earth.031208.100118.
  28. Mora, C.I., Driese, S.G. and Colarusso, L.A. 1996. Middle and Late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271, 1105–1107.
  29. Muchez, P., Peeters, C., Keppens, E. and Viaene, W.A. 1993. Stable isotopic composition of paleosols in the Lower Viséan of eastern Belgium: evidence of evaporation and soil-gas CO2. Chemical Geology 106, 389–396.
  30. Pagani, M., Arthur, M.A. and Freeman, K.H. 1999a. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292.
  31. Pagani, M., Freeman, K.H. and Arthur, M.A. 1999b. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879.
  32. Percival, L.M.E., Matsumoto, H., Callegaro, S., Erba, E., Kerr, A.C., Mutterlose, J. and Suzuki, K. 2024. Cretaceous large igneous provinces: from volcanic formation to environmental catastrophes and biological crises. Geological Society Special Publications 544:1, sp544-2023-88. https://doi.org/10.1144/SP544-2023-88.
  33. Popp, B.N., Hanson, K.L., Dore, J.E., Bidigare, R.R., Laws, E.A. and Wakeham, S.G. 1999. Controls on the carbon isotopic composition of phytoplankton. In: Abrantes, F. and Mix, A.C. (Eds.), Reconstructing Ocean History. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4197-4_21.
  34. Royer, D.L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology 114:1–2, 1–28. https://doi.org/10.1016/S0034-6667(00)00074-9.
  35. Royer, D.L., Berner, R.A., Montañez, I.P., Tabor, N.J. and Beerling, D.J. 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 4–10. https://doi.org/10.1130/1052-5173(2004)014<4CAAPDO>2.0.CO;2.
  36. Royer, D.L., Donnadieu, Y., Park, J., Kowalczyk, J. and Goddéris, Y. 2014. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. American Journal of Science 314:9, 1259–1283.
  37. Torsvik, T.H., Royer, D.L., Marcilly, C.M. and Werner, S.C. 2024. User-friendly carbon-cycle modelling and aspects of Phanerozoic climate change. Applied Computing and Geosciences 23, 100180. https://doi.org/10.1016/j.acags.2024.100180.
  38. Veizer, J. and Prokoph, A. 2015. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews 146, 92–104. https://doi.org/10.1016/j.earscirev.2015.03.008.
  39. Witkowski, C.R., Weijers, J.W.H., Blais, B., Schouten, S. and Sinninghe Damsté, J.S. 2018. Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic. Science Advances 4(11), eaat4556. https://doi.org/10.1126/sciadv.aat4556.
  40. Wolf-Gladrow, D.A., Riebesell, U., Burkhardt, S. and Bijma, J. 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus B 51, 461–476.
  41. Yoshioka, T. 1997. Phytoplanktonic carbon isotope fractionation: equations accounting for CO2-concentrating mechanisms. Journal of Plankton Research 19:10, 1455–1476.
  42. Zhuravlev, A.V. 2020. Trophic position of some Late Devonian–Carboniferous (Mississippian) conodonts revealed on carbon organic matter isotope signatures: a case study of the East European basin. Geodiversitas 42:24, 443–453. https://doi.org/10.5252/geodiversitas2020v42a24.
  43. Zhuravlev, A.V. 2023. Carbon isotope study of conodont elements: Applications and limitations. Marine Micropaleontology 178, 102200. https://doi.org/10.1016/j.marmicro.2022.102200.