Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 2 No. 1 (2025)

Decay experiments on shrimps provide insight into the fossilization potential of arthropod appendages

DOI
https://doi.org/10.26034/la.opal.2025.7073
Submitted
24 March 2025
Published
22-08-2025

Abstract

Decay experiments on organisms under controlled laboratory conditions provide a powerful tool for understanding the preservation potential of organisms in the rock record. These experiments have been applied to numerous animal groups, including but not limited to echinoderms, annelids, priapulids, chordates, and arthropods. However, little work has focused on the degradation of arthropod appendages, despite their abundance in many fossil sites. Here, we compare the decay of appendages in freshwater and saltwater shrimps. Our results show that appendages decay faster in freshwater than in saltwater. More importantly, setae on these appendages are preserved in minute detail and do not exhibit signs of degradation, even after the appendages have separated from the body. These results are then compared to appendage preservation patterns in the fossil record with a particular focus on radiodonts since their taxonomy and paleoecology largely rely on the shape and fine details of their frontal appendages. We suggest that radiodont appendages with differences in setal number are unlikely to represent taphonomic variations of the same species but are more likely to belong to different taxa.

References

  1. Allison, P.A., 1986. Soft-bodied animals in the fossil record: The role of decay in fragmentation during transport. Geology 14, 979. https://doi.org/10.1130/0091-7613(1986)14<979:SAITFR>2.0.CO;2 DOI: https://doi.org/10.1130/0091-7613(1986)14<979:SAITFR>2.0.CO;2
  2. Allison, P.A., 1988. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology 14, 139–154. https://doi.org/10.1017/S009483730001188X DOI: https://doi.org/10.1017/S009483730001188X
  3. Anderson, R.P., Tosca, N.J., Gaines, R.R., Mongiardino Koch, N., Briggs, D.E.G., 2018. A mineralogical signature for Burgess Shale–type fossilization. Geology 46, 347–350. https://doi.org/10.1130/G39941.1 DOI: https://doi.org/10.1130/G39941.1
  4. Anderson, R.P., Tosca, N.J., Saupe, E.E., Wade, J., Briggs, D.E.G., 2020. Early formation and taphonomic significance of kaolinite associated with Burgess Shale fossils. Geology 49, 355–359. https://doi.org/10.1130/G48067.1 DOI: https://doi.org/10.1130/G48067.1
  5. Audo, D., Winkler, N., Charbonnier, S., 2021. Pseudodrobna natator n. comb., a new link between crustacean faunas from the Jurassic of Germany and Cretaceous of Lebanon. geod 43, 209–218. https://doi.org/10.5252/geodiversitas2021v43a8 DOI: https://doi.org/10.5252/geodiversitas2021v43a8
  6. Baas, M., Briggs, D.E.G., Van Heemst, J.D.H., Kear, A.J., De Leeuw, J.W., 1995. Selective preservation of chitin during the decay of shrimp. Geochimica et Cosmochimica Acta 59, 945–951. https://doi.org/10.1016/0016-7037(95)00012-7 DOI: https://doi.org/10.1016/0016-7037(95)00012-7
  7. Barling, N., Saleh, F., Ma, X., 2023. A unique record of prokaryote cell pyritization. Geology. https://doi.org/10.1130/G51352.1 DOI: https://doi.org/10.1130/G51352.1
  8. Barros, O.A., Viana, M.S.S., Viana, B.C., Silva, J.H. da, Paschoal, A.R., Oliveira, P.V. de, 2021. New data on Beurlenia araripensis Martins-Neto & Mezzalira, 1991, a lacustrine shrimp from Crato Formation, and its morphological variations based on the shape and the number of rostral spines. PLOS ONE 16, e0247497. https://doi.org/10.1371/journal.pone.0247497 DOI: https://doi.org/10.1371/journal.pone.0247497
  9. Bath Enright, O.G., Minter, N.J., Sumner, E.J., 2017. Palaeoecological implications of the preservation potential of soft-bodied organisms in sediment-density flows: testing turbulent waters. Royal Society Open Science 4, 170212. https://doi.org/10.1098/rsos.170212 DOI: https://doi.org/10.1098/rsos.170212
  10. Bath Enright, O.G., Minter, N.J., Sumner, E.J., Mángano, M.G., Buatois, L.A., 2021. Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances. Communications Earth & Environment 2, 1–7. https://doi.org/10.1038/s43247-021-00176-w DOI: https://doi.org/10.1038/s43247-021-00176-w
  11. Bravi, S., Coppa, M.G., Garassino, A., Patricelli, R., 1999. Palaemon vesolensis n. sp.(Crustacea, Decapoda) from the Plattenkalk of Vesole Mount (Salerno, Southern Italy). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 140, 141–169.
  12. Briggs, D.E.G., 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22, 3, 631–664.
  13. Briggs, D.E.G., Kear, A.J., 1993. Decay and preservation of polychaetes: taphonomic thresholds in soft-bodied organisms. Paleobiology 19, 107–135. https://doi.org/10.1017/S0094837300012343 DOI: https://doi.org/10.1017/S0094837300012343
  14. Briggs, D.E.G., Kear, A.J., 1994. Decay and Mineralization of Shrimps. PALAIOS 9, 431–456. https://doi.org/10.2307/3515135 DOI: https://doi.org/10.2307/3515135
  15. Briggs, D.E.G., Kear, A.J., Baas, M., Leeuw, J.W., Rigby, S., 1995. Decay and composition of the hemichordate Rhabdopleura: implications for the taphonomy of graptolites. Lethaia 28, 15–23. https://doi.org/10.1111/j.1502-3931.1995.tb01589.x DOI: https://doi.org/10.1111/j.1502-3931.1995.tb01589.x
  16. Briggs, D.E.G., McMahon, S., 2016. The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology 59, 1–11. https://doi.org/10.1111/pala.12219 DOI: https://doi.org/10.1111/pala.12219
  17. Butler, A.D., Cunningham, J.A., Budd, G.E., Donoghue, P.C.J., 2015. Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization. Proceedings of the Royal Society B: Biological Sciences 282, 20150476. https://doi.org/10.1098/rspb.2015.0476 DOI: https://doi.org/10.1098/rspb.2015.0476
  18. Butterfield, N.J., 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16, 272–286. https://doi.org/10.1017/S0094837300009994 DOI: https://doi.org/10.1017/S0094837300009994
  19. Butterfield, N.J., 1995. Secular distribution of Burgess‐Shale‐type preservation. Lethaia 28, 1–13. https://doi.org/10.1111/j.1502-3931.1995.tb01587.x DOI: https://doi.org/10.1111/j.1502-3931.1995.tb01587.x
  20. Butterfield, N.J., 2003. Exceptional Fossil Preservation and the Cambrian Explosion. Integrative and Comparative Biology 43, 166–177. https://doi.org/10.1093/icb/43.1.166 DOI: https://doi.org/10.1093/icb/43.1.166
  21. Caron, J.-B., Jackson, D.A., 2008. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, The Dawn of Animal Life: Evolutionary and Palaeoecological Patterns in the Neoproterozoic-Cambrian Animal Fossil Record 258, 222–256. https://doi.org/10.1016/j.palaeo.2007.05.023 DOI: https://doi.org/10.1016/j.palaeo.2007.05.023
  22. Clements, T., Colleary, C., De Baets, K., Vinther, J., 2017. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60, 1–14. https://doi.org/10.1111/pala.12267 DOI: https://doi.org/10.1111/pala.12267
  23. Clements, T., Purnell, M.A., Gabbott, S., 2022. Experimental analysis of organ decay and pH gradients within a carcass and the implications for phosphatization of soft tissues. Palaeontology 65, e12617. https://doi.org/10.1111/pala.12617 DOI: https://doi.org/10.1111/pala.12617
  24. Collins, D., 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.). Journal of Paleontology 70, 280–293. https://doi.org/10.1017/S0022336000023362 DOI: https://doi.org/10.1017/S0022336000023362
  25. Cong, P., Ma, X., Hou, X., Edgecombe, G.D., Strausfeld, N.J., 2014. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542. https://doi.org/10.1038/nature13486 DOI: https://doi.org/10.1038/nature13486
  26. Corthésy, N., Antcliffe, J.B., Saleh, F., 2025a. Taxon-specific redox conditions control fossilisation pathways. Nat Commun 16, 3993. https://doi.org/10.1038/s41467-025-59372-3 DOI: https://doi.org/10.1038/s41467-025-59372-3
  27. Corthésy, N., Saleh, F., Antcliffe, J.B., Daley, A.C., 2025b. Kaolinite induces rapid authigenic mineralisation in unburied shrimps. Communications Earth & Environment 6, 1–8. https://doi.org/10.1038/s43247-024-01983-7 DOI: https://doi.org/10.1038/s43247-024-01983-7
  28. Corthésy, N., Saleh, F., Thomas, C., Antcliffe, J.B., Daley, A.C., 2024. The effects of clays on bacterial community composition during arthropod decay. Swiss Journal of Palaeontology 143, 26. https://doi.org/10.1186/s13358-024-00324-7 DOI: https://doi.org/10.1186/s13358-024-00324-7
  29. Daley, A.C., Antcliffe, J.B., Drage, H.B., Pates, S., 2018. Early fossil record of Euarthropoda and the Cambrian Explosion. Proc. Natl. Acad. Sci. U.S.A. 115, 5323–5331. https://doi.org/10.1073/pnas.1719962115 DOI: https://doi.org/10.1073/pnas.1719962115
  30. Daley, A.C., Budd, G.E., 2010. New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53, 721–738. https://doi.org/10.1111/j.1475-4983.2010.00955.x DOI: https://doi.org/10.1111/j.1475-4983.2010.00955.x
  31. Daley, A.C., Budd, G.E., Caron, J.-B., 2013. Morphology and systematics of the anomalocaridid arthropod Hurdia from the Middle Cambrian of British Columbia and Utah. Journal of Systematic Palaeontology 11, 743–787. https://doi.org/10.1080/14772019.2012.732723 DOI: https://doi.org/10.1080/14772019.2012.732723
  32. Daley, A.C., Budd, G.E., Caron, J.-B., Edgecombe, G.D., Collins, D., 2009. The Burgess Shale Anomalocaridid Hurdia and Its Significance for Early Euarthropod Evolution. Science 323, 1597–1600. https://doi.org/10.1126/science.1169514 DOI: https://doi.org/10.1126/science.1169514
  33. Daley, A.C., Edgecombe, G.D., 2014. Morphology of Anomalocaris canadensis from the Burgess Shale. Journal of Paleontology 88, 68–91. https://doi.org/10.1666/13-067 DOI: https://doi.org/10.1666/13-067
  34. Daley, A.C., Legg, D.A., 2015. A morphological and taxonomic appraisal of the oldest anomalocaridid from the Lower Cambrian of Poland. Geological Magazine 152, 949–955. https://doi.org/10.1017/S0016756815000412 DOI: https://doi.org/10.1017/S0016756815000412
  35. Daley, A.C., Peel, J.S., 2010. A possible anomalocaridid from the Cambrian Sirius Passet Lagerstätte, North Greenland. Journal of Paleontology 84, 352–355. https://doi.org/10.1666/09-136R1.1 DOI: https://doi.org/10.1666/09-136R1.1
  36. de Mazancourt, V., Wappler, T., Wedmann, S., 2022. Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany). Sci Rep 12, 18114. https://doi.org/10.1038/s41598-022-23125-9 DOI: https://doi.org/10.1038/s41598-022-23125-9
  37. El Khoury, A., Somogyi, A., Chi Fru, E., Saleh, F., Chraiki, I., Fontaine, C., Aubineau, J., Rollion-Bard, C., Harzhauser, M., El Albani, A., 2025a. A battle against arsenic toxicity by Earth’s earliest complex life forms. Nat Commun 16, 4388. https://doi.org/10.1038/s41467-025-59760-9 DOI: https://doi.org/10.1038/s41467-025-59760-9
  38. El Khoury, A., Saleh, F., El Albani, A., Fontaine, C., Rollion-Bard, C., Chraiki, I., Aubineau, J., Ngwal’ghoubou Ikouanga, J., Bhilisse, M., Zguaid, M. and Somogyi, A., 2025b. Pyrite morphology and sulfur isotopes refine taphonomic models for the 2.1 Ga Francevillian biota, Gabon. Scientific Reports, 15(1), pp.1-11. DOI: https://doi.org/10.1038/s41598-025-04512-4
  39. Feldmann, R.M., Grande, L., Birkhimer, C.P., Hannibal, J.T., McCoy, D.L., 1981. Decapod Fauna of the Green River Formation (Eocene) of Wyoming. Journal of Paleontology 55, 788–799.
  40. Feltovich, N., 2003. Nonparametric Tests of Differences in Medians: Comparison of the Wilcoxon–Mann–Whitney and Robust Rank-Order Tests. Experimental Economics 6, 273–297. https://doi.org/10.1023/A:1026273319211 DOI: https://doi.org/10.1023/A:1026273319211
  41. Fraga, M.C., Vega, C.S., 2025. Decay and preservation in marine basins: A guide to small multi-element skeletons. International Biodeterioration & Biodegradation 196, 105904. https://doi.org/10.1016/j.ibiod.2024.105904 DOI: https://doi.org/10.1016/j.ibiod.2024.105904
  42. Fu, D., Tong, G., Dai, T., Liu, W., Yang, Y., Zhang, Y., Cui, L., Li, L., Yun, H., Wu, Y., Sun, A., Liu, C., Pei, W., Gaines, R.R., Zhang, X., 2019. The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342. https://doi.org/10.1126/science.aau8800 DOI: https://doi.org/10.1126/science.aau8800
  43. Gäb, F., Ballhaus, C., Stinnesbeck, E., Kral, A.G., Janssen, K., Bierbaum, G., 2020. Experimental taphonomy of fish - role of elevated pressure, salinity and pH. Scientific Reports 10, 7839. https://doi.org/10.1038/s41598-020-64651-8 DOI: https://doi.org/10.1038/s41598-020-64651-8
  44. Gabbott, S.E., Xian-guang, H., Norry, M.J., Siveter, D.J., 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904. https://doi.org/10.1130/G20640.1 DOI: https://doi.org/10.1130/G20640.1
  45. Gaines, R.R., 2014. Burgess Shale-type Preservation and its Distribution in Space and Time. The Paleontological Society Papers 20, 123–146. https://doi.org/10.1017/S1089332600002837 DOI: https://doi.org/10.1017/S1089332600002837
  46. Gaines, R.R., Briggs, D.E.G., Yuanlong, Z., 2008. Cambrian Burgess Shale–type deposits share a common mode of fossilization. Geology 36, 755–758. https://doi.org/10.1130/G24961A.1 DOI: https://doi.org/10.1130/G24961A.1
  47. Gaines, R.R., García-Bellido, D.C., Jago, J.B., Myrow, P.M., Paterson, J.R., 2024. The Emu Bay Shale: A unique early Cambrian Lagerstätte from a tectonically active basin. Science Advances 10, eadp2650. https://doi.org/10.1126/sciadv.adp2650 DOI: https://doi.org/10.1126/sciadv.adp2650
  48. Garassino, A., 1997. The macruran decapod crustaceans of the Lower Cretaceous (Lower Barremian) of Las Hoyas (Cuenca, Spain). Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano 137, 101–126.
  49. Garassino, A., Bravi, S., 2003. Palaemon antonellae new species (Crustacea, Decapoda, Caridea) from the lower Cretaceous “Platydolomite” of Profeti (Caserta, Italy). Journal of Paleontology 77, 589–592. https://doi.org/10.1666/0022-3360(2003)077<0589:PANSCD>2.0.CO;2 DOI: https://doi.org/10.1666/0022-3360(2003)077<0589:PANSCD>2.0.CO;2
  50. Garassino, A., Yanbin, S., Schram, F.R., Taylor, R.S., 2002. Yongjicaris zhejiangensis n. gen. n. sp. (Crustacea, Decapoda, Caridea) from the Lower Cretaceous of Zhejiang Province, China.
  51. Garm, A., Watling, L., 2013. The crustacean integument: setae, setules, and other ornamentation, in: Functional Morphology and Diversity. Oxford University Press, pp. 167–198. DOI: https://doi.org/10.1093/acprof:osobl/9780195398038.003.0006
  52. Gerschermann, S., Ballhaus, C., Gäb, F., 2021. Rheological properties of calcite oozes: Implications for the fossilisation in the plattenkalks of the Solnhofen-Eichstätt lagoons in the Franconian Alb, Germany. PLOS ONE 16, e0252469. https://doi.org/10.1371/journal.pone.0252469 DOI: https://doi.org/10.1371/journal.pone.0252469
  53. Guo, J., Pates, S., Cong, P., Daley, A.C., Edgecombe, G.D., Chen, T., Hou, X., 2019. A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota. Papers in Palaeontology 5, 99–110. https://doi.org/10.1002/spp2.1231 DOI: https://doi.org/10.1002/spp2.1231
  54. Hancy, A.D., Antcliffe, J.B., 2020. Anoxia can increase the rate of decay for cnidarian tissue: Using ctinia equina to understand the early fossil record. Geobiology 18, 167–184. https://doi.org/10.1111/gbi.12370 DOI: https://doi.org/10.1111/gbi.12370
  55. Harrell, F.E., 2015. Ordinal Logistic Regression, in: Harrell, Jr., Frank E. (Ed.), Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, Springer Series in Statistics. Springer International Publishing, Cham, pp. 311–325. https://doi.org/10.1007/978-3-319-19425-7_13 DOI: https://doi.org/10.1007/978-3-319-19425-7_13
  56. Hou, X.-G., Siveter, David J, Siveter, Derek J, Aldridge, R.J., Cong, P.-Y., Gabbott, S.E., Ma, X., Purnell, M.A., Williams, M., 2017. The Cambrian fossils of Chengjiang, China: The flowering of early animal life. Wiley Blackwell. DOI: https://doi.org/10.1002/9781118896372
  57. Iniesto, M., Buscalioni, Á.D., Carmen Guerrero, M., Benzerara, K., Moreira, D., López-Archilla, A.I., 2016. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Scientific Reports 6, 25716. https://doi.org/10.1038/srep25716 DOI: https://doi.org/10.1038/srep25716
  58. Iniesto, M., Laguna, C., Florín, M., Guerrero, M.C., Chicote, A., Buscalioni, A.D., López-Archilla, A.I., 2015. The impact of microbial mats and their microenvironmental conditions in early decay of fish. PALAIOS 30, 792–801. https://doi.org/10.2110/palo.2014.086 DOI: https://doi.org/10.2110/palo.2014.086
  59. Iniesto, M., Villalba, I., Buscalioni, A.D., Guerrero, M.C., López-Archilla, A.I., 2017. The effect of microbial mats in the decay of anurans with implications for understanding taphonomic processes in the fossil record. Scientific Reports 7, 45160. https://doi.org/10.1038/srep45160 DOI: https://doi.org/10.1038/srep45160
  60. Izquierdo-López, A., Caron, J.-B., 2022. Extreme multisegmentation in a giant bivalved arthropod from the Cambrian Burgess Shale. iScience 25. https://doi.org/10.1016/j.isci.2022.104675 DOI: https://doi.org/10.1016/j.isci.2022.104675
  61. Jauvion, C., Charbonnier, S., Bernard, S., 2017. A new look at the shrimps (Crustacea, Decapoda, Penaeoidea) from the Middle Jurassic La Voulte-sur-Rhône Lagerstätte. geod 39, 705–716. https://doi.org/10.5252/g2017n4a3 DOI: https://doi.org/10.5252/g2017n4a3
  62. Klompmaker, A.A., Portell, R.W., Frick, M.G., 2017. Comparative experimental taphonomy of eight marine arthropods indicates distinct differences in preservation potential. Palaeontology 60, 773–794. https://doi.org/10.1111/pala.12314 DOI: https://doi.org/10.1111/pala.12314
  63. Laibl, L., Drage, H.B., Pérez-Peris, F., Schöder, S., Saleh, F., Daley, A.C., 2023. Babies from the Fezouata Biota: Early developmental trilobite stages and their adaptation to high latitudes. Geobios. https://doi.org/10.1016/j.geobios.2023.06.005 DOI: https://doi.org/10.1016/j.geobios.2023.06.005
  64. Lustri, L., Gueriau, P., Daley, A.C., 2024. Lower Ordovician synziphosurine reveals early euchelicerate diversity and evolution. Nat Commun 15, 3808. https://doi.org/10.1038/s41467-024-48013-w DOI: https://doi.org/10.1038/s41467-024-48013-w
  65. Ma, X., Hou, X., Edgecombe, G.D., Strausfeld, N.J., 2012. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261. https://doi.org/10.1038/nature11495 DOI: https://doi.org/10.1038/nature11495
  66. Mähler, B., Janssen, K., Lönartz, M.I., Lagos, M., Geisler, T., Rust, J., Bierbaum, G., 2023. Time-dependent microbial shifts during crayfish decomposition in freshwater and sediment under different environmental conditions. Scientific Reports 13, 1539. https://doi.org/10.1038/s41598-023-28713-x DOI: https://doi.org/10.1038/s41598-023-28713-x
  67. McNamara, M.E., Orr, P.J., Kearns, S.L., Alcalá, L., Anadón, P., Peñalver Mollá, E., 2009. Soft-tissue preservation in Miocene frogs from Libros, Spain: insights inot the genesis of decay microenvironments. PALAIOS 24, 104–117. https://doi.org/10.2110/palo.2008.p08-017r DOI: https://doi.org/10.2110/palo.2008.p08-017r
  68. Moreau, J.-D., Vullo, R., Charbonnier, S., Jattiot, R., Trincal, V., Néraudeau, D., Fara, E., Baret, L., Garassino, A., Gand, G., Lafaurie, G., 2022. Konservat-Lagerstätten from the Upper Jurassic lithographic limestone of the Causse Méjean (Lozère, southern France): palaeontological and palaeoenvironmental synthesis. Geological Magazine 159, 761–781. https://doi.org/10.1017/S0016756821001382 DOI: https://doi.org/10.1017/S0016756821001382
  69. Moysiuk, J., Caron, J.-B., 2019. A new hurdiid radiodont from the Burgess Shale evinces the exploitation of Cambrian infaunal food sources. Proceedings of the Royal Society B: Biological Sciences 286, 20191079. https://doi.org/10.1098/rspb.2019.1079 DOI: https://doi.org/10.1098/rspb.2019.1079
  70. Moysiuk, J., Caron, J.-B., 2022. A three-eyed radiodont with fossilized neuroanatomy informs the origin of the arthropod head and segmentation. Current Biology 32, 3302-3316.e2. https://doi.org/10.1016/j.cub.2022.06.027 DOI: https://doi.org/10.1016/j.cub.2022.06.027
  71. Müller, K.J., Walossek, D., 1985. Skaracarida, a new order of Crustacea from the Upper Cambrian of Västergötland, Sweden, in: Skaracarida, a New Order of Crustacea from the Upper Cambrian of Västergötland, Sweden, Fossils and Strata. Universitetsforlaget, pp. 1–65. https://doi.org/10.18261/8200074986-1985-01 DOI: https://doi.org/10.18261/8200074986-1985-01
  72. Muller, K. J., Walossek, D., 1988. External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Fossils and Strata 23, 1–70. https://doi.org/10.18261/8200374122-1988-01 DOI: https://doi.org/10.18261/8200374122-1988-01
  73. Murdock, D.J., Gabbott, S.E., Mayer, G., Purnell, M.A., 2014. Decay of velvet worms (Onychophora), and bias in the fossil record of lobopodians. BMC Evolutionary Biology 14, 222. https://doi.org/10.1186/s12862-014-0222-z DOI: https://doi.org/10.1186/s12862-014-0222-z
  74. Mutel, M.H.E., Waugh, D.A., Feldmann, R.M., Parsons-Hubbard, K.M., 2008. Experimental taphonomy of Callinectes sapidus and cuticular controls on preservation. PALAIOS 23, 615–623. https://doi.org/10.2110/palo.2008.p08-024r DOI: https://doi.org/10.2110/palo.2008.p08-024r
  75. Naimark, E., Kalinina, M., Boeva, N., 2018. Persistence of external anatomy of small crustaceans in a long term taphonomic experiment. PALAIOS 33, 154–163. https://doi.org/10.2110/palo.2017.083 DOI: https://doi.org/10.2110/palo.2017.083
  76. Naimark, E., Kalinina, M., Shokurov, A., Boeva, N., Markov, A., Zaytseva, L., 2016. Decaying in different clays: implications for soft-tissue preservation. Palaeontology 59, 583–595. https://doi.org/10.1111/pala.12246 DOI: https://doi.org/10.1111/pala.12246
  77. Nanglu, K., Caron, J.-B., Gaines, R.R., 2020. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81. https://doi.org/10.1017/pab.2019.42 DOI: https://doi.org/10.1017/pab.2019.42
  78. Newman, S.A., Daye, M., Fakra, S.C., Marcus, M.A., Pajusalu, M., Pruss, S.B., Smith, E.F., Bosak, T., 2019. Experimental preservation of muscle tissue in quartz sand and kaolinite. PALAIOS 34, 437–451. https://doi.org/10.2110/palo.2019.030 DOI: https://doi.org/10.2110/palo.2019.030
  79. Nielsen, M.L., Lee, M., Ng, H.C., Rushton, J.C., Hendry, K.R., Kihm, J.-H., Nielsen, A.T., Park, T.-Y.S., Vinther, J., Wilby, P.R., 2022. Metamorphism obscures primary taphonomic pathways in the early Cambrian Sirius Passet Lagerstätte, North Greenland. Geology 50, 4–9. DOI: https://doi.org/10.1130/G48906.1
  80. Orr, P.J., Briggs, D.E.G., Kearns, S.L., 1998. Cambrian Burgess Shale Animals Replicated in Clay Minerals. Science 281, 1173–1175. https://doi.org/10.1126/science.281.5380.1173 DOI: https://doi.org/10.1126/science.281.5380.1173
  81. Palmer, B., Karačić, S., Low, S.L., Janssen, K., Färber, H., Liesegang, M., Bierbaum, G., Gee, C.T., 2024. Decay experiments and microbial community analysis of water lily leaf biofilms: Sediment effects on leaf preservation potential. PLOS ONE 19, e0315656. https://doi.org/10.1371/journal.pone.0315656 DOI: https://doi.org/10.1371/journal.pone.0315656
  82. Paterson, J.R., García-Bellido, D.C., Edgecombe, G.D., 2023. The early Cambrian Emu Bay Shale radiodonts revisited: morphology and systematics. Journal of Systematic Palaeontology 21, 2225066. https://doi.org/10.1080/14772019.2023.2225066 DOI: https://doi.org/10.1080/14772019.2023.2225066
  83. Pates, S., Daley, A.C., 2019. The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts. Geol. Mag. 156, 1233–1246. https://doi.org/10.1017/S0016756818000547 DOI: https://doi.org/10.1017/S0016756818000547
  84. Pates, S., Lerosey-Aubril, R., Daley, A.C., Kier, C., Bonino, E., Ortega-Hernández, J., 2021. The diverse radiodont fauna from the Marjum Formation of Utah, USA (Cambrian: Drumian). PeerJ 9, e10509. https://doi.org/10.7717/peerj.10509 DOI: https://doi.org/10.7717/peerj.10509
  85. Pazinato, P.G., Jauvion, C., Schweigert, G., Haug, J.T., Haug, C., 2021. After 100 years: a detailed view of an eumalacostracan crustacean from the Upper Jurassic Solnhofen Lagerstätte with raptorial appendages unique to Euarthropoda. Lethaia 54, 55–72. https://doi.org/10.1111/let.12382 DOI: https://doi.org/10.1111/let.12382
  86. Perez-Peris, F., Laibl, L., Vidal, M., Daley, A., Vidal, M., Daley, A.C., 2021. Systematics, morphology, and appendages of an Early Ordovician pilekiine trilobite Anacheirurus from Fezouata Shale and the early diversification of Cheiruridae. Acta Palaeontologica Polonica 66, 857–877. https://doi.org/10.4202/app.00902.2021 DOI: https://doi.org/10.4202/app.00902.2021
  87. Plotnick, R.E., 1986. Taphonomy of a Modern Shrimp: Implications for the Arthropod Fossil Record. PALAIOS 1, 286. https://doi.org/10.2307/3514691 DOI: https://doi.org/10.2307/3514691
  88. Potin, G.J.-M., Daley, A.C., 2023. The significance of Anomalocaris and other Radiodonta for understanding paleoecology and evolution during the Cambrian explosion. Frontiers in Earth Science 11. DOI: https://doi.org/10.3389/feart.2023.1160285
  89. Potin, G.J.-M., Gueriau, P., Daley, A.C., 2023. Radiodont frontal appendages from the Fezouata Biota (Morocco) reveal high diversity and ecological adaptations to suspension-feeding during the Early Ordovician. Frontiers in Ecology and Evolution 11. DOI: https://doi.org/10.3389/fevo.2023.1214109
  90. Purnell, M.A., Donoghue, P.J.C., Gabbott, S.E., McNamara, M.E., Murdock, D.J.E., Sansom, R.S., 2018. Experimental analysis of soft-tissue fossilization: opening the black box. Palaeontology 61, 317–323. https://doi.org/10.1111/pala.12360 DOI: https://doi.org/10.1111/pala.12360
  91. Sagemann, J., Bale, S.J., Briggs, D.E.G., Parkes, R.J., 1999. Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochimica et Cosmochimica Acta 63, 1083–1095. https://doi.org/10.1016/S0016-7037(99)00087-3 DOI: https://doi.org/10.1016/S0016-7037(99)00087-3
  92. Saleh, F., Antcliffe, J.B., Birolini, E., Candela, Y., Corthésy, N., Daley, A.C., Dupichaud, C., Gibert, C., Guenser, P., Laibl, L., Lefebvre, B., Michel, S., Potin, G.J.-M., 2024a. Highly resolved taphonomic variations within the Early Ordovician Fezouata Biota. Scientific Reports 14, 20807. https://doi.org/10.1038/s41598-024-71622-w DOI: https://doi.org/10.1038/s41598-024-71622-w
  93. Saleh, F., Antcliffe, J.B., Lefebvre, B., Pittet, B., Laibl, L., Perez Peris, F., Lustri, L., Gueriau, P., Daley, A.C., 2020a. Taphonomic bias in exceptionally preserved biotas. Earth and Planetary Science Letters 529, 115873. https://doi.org/10.1016/j.epsl.2019.115873 DOI: https://doi.org/10.1016/j.epsl.2019.115873
  94. Saleh, F., Bath-Enright, O.G., Daley, A.C., Lefebvre, B., Pittet, B., Vite, A., Ma, X., Mángano, M.G., Buatois, L.A., Antcliffe, J.B., 2021a. A novel tool to untangle the ecology and fossil preservation knot in exceptionally preserved biotas. Earth and Planetary Science Letters 569, 117061. https://doi.org/10.1016/j.epsl.2021.117061 DOI: https://doi.org/10.1016/j.epsl.2021.117061
  95. Saleh, F., Daley, A.C., Lefebvre, B., Pittet, B., Perrillat, J.P., 2020b. Biogenic Iron Preserves Structures during Fossilization: A Hypothesis. BioEssays 42, 1900243. https://doi.org/10.1002/bies.201900243 DOI: https://doi.org/10.1002/bies.201900243
  96. Saleh, F., Lefebvre, B., Dupichaud, C., Martin, E.L.O., Nohejlová, M., Spaccesi, L., 2023. Skeletal elements controlled soft-tissue preservation in echinoderms from the Early Ordovician Fezouata Biota. Geobios. https://doi.org/10.1016/j.geobios.2023.08.001 DOI: https://doi.org/10.1016/j.geobios.2023.08.001
  97. Saleh, F., Lustri, L., Gueriau, P., Potin, G.J.-M., Pérez-Peris, F., Laibl, L., Jamart, V., Vite, A., Antcliffe, J.B., Daley, A.C., Nohejlová, M., Dupichaud, C., Schöder, S., Bérard, E., Lynch, S., Drage, H.B., Vaucher, R., Vidal, M., Monceret, E., Monceret, S., Lefebvre, B., 2024b. The Cabrières Biota (France) provides insights into Ordovician polar ecosystems. Nat Ecol Evol 1–12. https://doi.org/10.1038/s41559-024-02331-w DOI: https://doi.org/10.1038/s41559-024-02331-w
  98. Saleh, F., Ma, X., Guenser, P., Mángano, M.G., Buatois, L.A., Antcliffe, J.B., 2022a. Probability-based preservational variations within the early Cambrian Chengjiang biota (China). PeerJ 10, e13869. https://doi.org/10.7717/peerj.13869 DOI: https://doi.org/10.7717/peerj.13869
  99. Saleh, F., Pittet, B., Perrillat, J.-P., Lefebvre, B., 2019. Orbital control on exceptional fossil preservation. Geology 47, 103–106. https://doi.org/10.1130/G45598.1 DOI: https://doi.org/10.1130/G45598.1
  100. Saleh, F., Pittet, B., Sansjofre, P., Guériau, P., Lalonde, S., Perrillat, J.-P., Vidal, M., Lucas, V., El Hariri, K., Kouraiss, K., Lefebvre, B., 2020c. Taphonomic pathway of exceptionally preserved fossils in the Lower Ordovician of Morocco. Geobios 60, 99–115. https://doi.org/10.1016/j.geobios.2020.04.001 DOI: https://doi.org/10.1016/j.geobios.2020.04.001
  101. Saleh, F., Qi, C., Buatois, L.A., Mángano, M.G., Paz, M., Vaucher, R., Zheng, Q., Hou, X.-G., Gabbott, S.E., Ma, X., 2022b. The Chengjiang Biota inhabited a deltaic environment. Nature Communications 13, 1569. https://doi.org/10.1038/s41467-022-29246-z DOI: https://doi.org/10.1038/s41467-022-29246-z
  102. Saleh, F., Vaucher, R., Antcliffe, J.B., Daley, A.C., El Hariri, K., Kouraiss, K., Lefebvre, B., Martin, E.L.O., Perrillat, J.-P., Sansjofre, P., Vidal, M., Pittet, B., 2021b. Insights into soft-part preservation from the Early Ordovician Fezouata Biota. Earth-Science Reviews 213, 103464. https://doi.org/10.1016/j.earscirev.2020.103464 DOI: https://doi.org/10.1016/j.earscirev.2020.103464
  103. Saleh, F., Vaucher, R., Vidal, M., Hariri, K.E., Laibl, L., Daley, A.C., Gutiérrez-Marco, J.C., Candela, Y., Harper, D.A.T., Ortega-Hernández, J., Ma, X., Rida, A., Vizcaïno, D., Lefebvre, B., 2022c. New fossil assemblages from the Early Ordovician Fezouata Biota. Sci Rep 12, 20773. https://doi.org/10.1038/s41598-022-25000-z DOI: https://doi.org/10.1038/s41598-022-25000-z
  104. Sansom, R.S., 2014. Experimental Decay of Soft Tissues. The Paleontological Society Papers 20, 259–274. https://doi.org/10.1017/S1089332600002886 DOI: https://doi.org/10.1017/S1089332600002886
  105. Sansom, R.S., Gabbott, S.E., Purnell, M.A., 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463, 797–800. https://doi.org/10.1038/nature08745 DOI: https://doi.org/10.1038/nature08745
  106. Sansom, R.S., Gabbott, S.E., Purnell, M.A., 2013. Atlas of vertebrate decay: a visual and taphonomic guide to fossil interpretation. Palaeontology 56, 457–474. https://doi.org/10.1111/pala.12037 DOI: https://doi.org/10.1111/pala.12037
  107. Schiffbauer, J.D., Xiao, S., Cai, Y., Wallace, A.F., Hua, H., Hunter, J., Xu, H., Peng, Y., Kaufman, A.J., 2014. A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nature Communications 5, 5754. https://doi.org/10.1038/ncomms6754 DOI: https://doi.org/10.1038/ncomms6754
  108. Schmidt, M., Hou, X., Mai, H., Zhou, G., Melzer, R.R., Zhang, X., Liu, Y., 2024. Unveiling the ventral morphology of a rare early Cambrian great appendage arthropod from the Chengjiang biota of China. BMC Biol 22, 96. https://doi.org/10.1186/s12915-024-01889-y DOI: https://doi.org/10.1186/s12915-024-01889-y
  109. Schmidt, M., Liu, Y., Hou, X., Haug, J.T., Haug, C., Mai, H., Melzer, R.R., 2021. Intraspecific variation in the Cambrian: new observations on the morphology of the Chengjiang euarthropod Sinoburius lunaris. BMC Ecol Evo 21, 127. https://doi.org/10.1186/s12862-021-01854-1 DOI: https://doi.org/10.1186/s12862-021-01854-1
  110. Slagter, S., Konhauser, K.O., Briggs, D.E.G., Tarhan, L.G., 2024. Controls on authigenic mineralization in experimental Ediacara-style preservation. Geobiology 22, e12615. https://doi.org/10.1111/gbi.12615 DOI: https://doi.org/10.1111/gbi.12615
  111. Van Roy, P., Briggs, D.E.G., Gaines, R.R., 2015. The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. Journal of the Geological Society 172, 541–549. https://doi.org/10.1144/jgs2015-017 DOI: https://doi.org/10.1144/jgs2015-017
  112. Vinther, J., Stein, M., Longrich, N.R., Harper, D.A.T., 2014. A suspension-feeding anomalocarid from the Early Cambrian. Nature 507, 496–499. https://doi.org/10.1038/nature13010 DOI: https://doi.org/10.1038/nature13010
  113. Walossek, D., 1993. The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea, in: The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata. Scandinavian University Press, pp. 1–202. https://doi.org/10.18261/8200374874-1993-01 DOI: https://doi.org/10.18261/8200374874-1993-01
  114. Whiteaves, J.F., 1892. Description of a new genus and species of phyllocarid Crustacea from the Middle Cambrian of Mount Stephen, B.C. The Canadian Record of Science 205–208.
  115. Whittington, H.B., Briggs, D.E.G., 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British-Columbia. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 309, 569–609. https://doi.org/10.1098/rstb.1985.0096 DOI: https://doi.org/10.1098/rstb.1985.0096
  116. Wijnker, J.J., Koop, G., Lipman, L.J.A., 2006. Antimicrobial properties of salt (NaCl) used for the preservation of natural casings. Food Microbiol 23, 657–662. https://doi.org/10.1016/j.fm.2005.11.004 DOI: https://doi.org/10.1016/j.fm.2005.11.004
  117. Wilson, L.A., Butterfield, N.J., 2014. Sediment Effects on the Preservation of Burgess Shale-Type Compression Fossils. PALAIOS 29, 145–154. https://doi.org/10.2110/palo.2013.075 DOI: https://doi.org/10.2110/palo.2013.075
  118. Winkler, N., 2013. A new genus and species of caridean shrimps from the Upper Jurassic Solnhofen Lithographic Limestones of Schernfeld (S Germany). Zitteliana 77–83. https://doi.org/10.5282/ubm/epub.19015
  119. Winkler, N., 2014. A new caridean shrimp (Crustacea: Decapoda: Dendrobranchiata) from the Upper Jurassic Solnhofen Lithographic Limestones of Schernfeld (South Germany). Zitteliana 83–90. https://doi.org/10.5282/ubm/epub.22325
  120. Wu, Y., Fu, D., Ma, J., Lin, W., Sun, A., Zhang, X., 2021a. Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta). PalZ 95, 209–221. https://doi.org/10.1007/s12542-020-00545-4 DOI: https://doi.org/10.1007/s12542-020-00545-4
  121. Wu, Y., Ma, J., Lin, W., Sun, A., Zhang, X., Fu, D., 2021b. New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: Biostratigraphic and paleobiogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 569, 110333. https://doi.org/10.1016/j.palaeo.2021.110333 DOI: https://doi.org/10.1016/j.palaeo.2021.110333
  122. Wu, Y., Pates, S., Liu, C., Zhang, M., Lin, W., Ma, J., Wu, Yuheng, Chai, S., Zhang, X., Fu, D., 2024a. A new radiodont from the lower Cambrian (Series 2 Stage 3) Chengjiang Lagerstätte, South China informs the evolution of feeding structures in radiodonts. Journal of Systematic Palaeontology 22, 2364887. https://doi.org/10.1080/14772019.2024.2364887 DOI: https://doi.org/10.1080/14772019.2024.2364887
  123. Wu, Y., Pates, S., Ma, J., Lin, W., Wu, Yuheng, Zhang, X., Fu, D., 2022. Addressing the Chengjiang conundrum: A palaeoecological view on the rarity of hurdiid radiodonts in this most diverse early Cambrian Lagerstätte. Geoscience Frontiers 13, 101430. https://doi.org/10.1016/j.gsf.2022.101430 DOI: https://doi.org/10.1016/j.gsf.2022.101430
  124. Wu, Y., Pates, S., Zhang, M., Lin, W., Ma, J., Liu, C., Wu, Yuheng, Zhang, X., Fu, D., 2024b. Exceptionally preserved radiodont arthropods from the lower Cambrian (Stage 3) Qingjiang Lagerstätte of Hubei, South China and the biogeographic and diversification patterns of radiodonts. Papers in Palaeontology 10, e1583. https://doi.org/10.1002/spp2.1583 DOI: https://doi.org/10.1002/spp2.1583
  125. Yochelson, E.L., 1996. Discovery, Collection, and Description of the Middle Cambrian Burgess Shale Biota by Charles Doolittle Walcott. Proceedings of the American Philosophical Society 140, 469–545.
  126. Zhang, M., Wu, Yu, Lin, W., Ma, J., Wu, Yuheng, Fu, D., 2023. Amplectobeluid radiodont Guanshancaris gen. nov. from the lower Cambrian (Stage 4) Guanshan Lagerstätte of South China: biostratigraphic and paleobiogeographic implications. Biology 12, 583. https://doi.org/10.3390/biology12040583 DOI: https://doi.org/10.3390/biology12040583
  127. Zhao, F., Zhu, M., Hu, S., 2010. Community structure and composition of the Cambrian Chengjiang biota. Sci. China Earth Sci. 53, 1784–1799. https://doi.org/10.1007/s11430-010-4087-8 DOI: https://doi.org/10.1007/s11430-010-4087-8

Most read articles by the same author(s)